
Noise suppression

www.kovalevsky.de, last update: 2010-10-25

Let me know

what you think

 The simplest averaging filter

 The fast averaging filter

 The fast Gaussian filter

 Sigma filter: the most efficient one

 Comparison of different filters

The simplest averaging filter

The unweighted averaging filter calculates the mean gray value in a gliding square window of

W*W pixels. The higher the window size W the stronger is the suppression of noise: the filter

decreases the noise by the factor W. For the sake of symmetry W usually is an odd integer: 3,

5, 7, 9, 11 etc. The window coordinates (x+xx, y+yy) vary symmetrically around the current

pixel (x, y): −W/2 ≤ xx ≤ +W/2 and −W/2 ≤ yy ≤ +W/2 with W/2 = 1, 2, 3, 4 etc.

The window lies at any image border partially outside of the image. In this case, the

computation looses its natural symmetry because only pixels inside the image can be

averaged. A reasonable way to solve the border problem is to take control of the coordinates

(x+xx, y+yy) whether they point out of the image. In this case the summation of the gray

values must be suspended and the divisor nS should not to be incremented.

The simplest slow version of the algorithm has four nested for-loops:

 int nS, sum;

 for (int y=0; y < image0.Height; y++) //========================

 { for (int x=0; x < image0.Width; x++) //=====================

 { nS=sum=0;

 for (int yy=-W/2; yy <= W/2; yy++) //===============

 { if (y+yy >= 0 && y+yy < image0.Height)

 for (int xx=-W/2; xx <= W/2; xx++)//==========

 { if (x+xx >= 0 && x+xx < image0.Width)

 { sum+=image0.GetPixel(x+xx, y+yy); nS++;

 }

 } //====== end for (int xx... ==================

 } //======== end for (int yy... ====================

 image1.SetPixel(x, y, (sum+nS/2)/nS);//+nS/2 for rounding

 } //============ end for (int x... ===========================

 } //============== end for (int y... =============================

where x, y are the indices of both image0 and image1 and xx,yy the indices of the pixels in the

averaging window.

Then computation of each sum in the innermost for-loop needs W*W additions and W*W

accesses to the image per one pixel, which is quite time consuming.

The fast averaging filter

The fast averaging filter solves the same problem, but it is much faster. The fast filter blurs

the image as the simple filter does. Therefore its main application area is shading correction

http://www.kovalevsky.de/
file:///C:/Users/Kovalevski/Documents/NeueWeb/HauptOrdner_Leer/Wladimir/ImProc/L01_Noise/Noise_e.htm%23a0
file:///C:/Users/Kovalevski/Documents/NeueWeb/HauptOrdner_Leer/Wladimir/ImProc/L01_Noise/Noise_e.htm%23a1
file:///C:/Users/Kovalevski/Documents/NeueWeb/HauptOrdner_Leer/Wladimir/ImProc/L01_Noise/Noise_e.htm%23a2
file:///C:/Users/Kovalevski/Documents/NeueWeb/HauptOrdner_Leer/Wladimir/ImProc/L01_Noise/Noise_e.htm%23a3
file:///C:/Users/Kovalevski/Documents/NeueWeb/HauptOrdner_Leer/Wladimir/ImProc/L01_Noise/Noise_e.htm%23a4
mailto:prof@miszalok.de?subject=Kovalevsky%20Lectures

rather than noise suppression. The best filter for Gaussian noise suppression is the sigma filter

described below. Using the following basic idea, it is possible to reduce the number of

operations per pixel from W*W to ≈4: The filter first calculates and saves the sum of the gray

values in each column of W pixels, while the middle pixel of each column lies in the current

row of the image. The filter then directly calculates the sum over the window having its

central pixel at the beginning of a row, i.e. by adding up the sums saved in the columns. Then

the window moves one pixel along the row, and the filter calculates the sum for the next

location by adding the value of the column at the right border of the window and by

subtracting the value of the column at the left border. It is necessary to check, whether the

column to be added or subtracted is in the image. If it is not, the corresponding addition or

subtraction must be skipped.

Applying a similar procedure to sum up the columns, the average number of

additions/subtractions per pixel is reduced to ≈2+2=4.

When proceeding to the next row of the image, the filter updates the values of the columns by

adding the gray value below the lower end and subtracting the gray value at the upper end of

each column. Also in this case it is necessary to check, whether the gray value to be added or

subtracted is in the image.

As soon as the sum of the gray values in a window is calculated, the filter divides (with

rounding) the sum by the number of pixels in the intersection of the window with the image

and saves the result in the corresponding pixel of the output image.

The fast Gaussian filter

The simple averaging filter produces a smoothed image, in which some rectangular shapes not

present in the original image may be seen. These shapes arrive since the averaging filter

transforms each light pixel to a homogeneously light rectangle of the size of the filter window.

As soon as a pixel has an "outstanding" gray value, which differs from the values of adjacent

pixels by a great amount, the rectangle becomes visible. This is an unwanted distortion. It can

be avoided when using the Gaussian filter that multiplies the gray values to be added by values

which decay with the distance from the centre of the window according to the Gauss law. The

values of the Gauss law are floats less than 1. They can be calculated in advance and saved in a

two-dimensional array. Then the gray values must be multiplied by these values and the sum of

the products must be calculated. This procedure needs W
2
 multiplications and additions per

pixel of the image to be filtered.

There is a possibility to obtain

approximately the same results while

using the knowledge of the statistics

which says that the convolution of

many equivalent probability

distributions tends to the Gaussian

distribution. The convergence of this

process is so fast, that it is sufficient to

calculate the convolution of only three

"rectangular" distributions to obtain a

good approximation. Thus to perform a

Gaussian filtering of an image it is

sufficient to filter the image three times

by a fast averaging filter. This

procedure needs 4*3=12 additions per

pixel independently from the size of

the window.

If you are interested in the complete C++ code of the fast Gauss filter including border and

color handling, write to kovalev@tfh-berlin.de

Sigma filter: the most efficient one

Both the averaging and the Gaussian filter blur the image. The averaging filter replaces each

pixel of brightness B by a square of WxW pixels with the brightness B/(WxW). Thus steep

edges of homogeneous regions become transformed to ramps of the width W.

The idea of the sigma-filter consists in averaging only those gray values in a window, which

differ from the gray value of the central pixel by no more than a fixed parameter "sigma". The

pseudo-code:

sum=0; number=0; M=Input(X,Y);

for each pixel Input(x,y) in the window with the centre at (X,Y):

 if (abs(Input(x,y)-M) < sigma) { sum+=Input(x,y); number++;}

 Output(X,Y)=Round(sum/number);

This naïve solution would work, but it would be rather slow: it needs in the worst case

OPP=4*W 2 operations per pixel. Unfortunately, it is impossible to apply in this case the

method used in the fast averaging filter since the procedure is non-linear. The procedure can

be made faster due to the use of a local histogram. The histogram is an array, in which each

element contains the number of occurrences of the corresponding gray value in the window.

The sigma filter calculates the histogram for each location of the window by means of the

updating procedure: gray values in the vertical column at the right border of the window are

used to increase the corresponding values of the histogram, while the values at the left border

are used to decrease them:

OPP is the number of operations per pixel. 2*W is the number of operations necessary to

actualize the histogram and 2*(2*sigma+1) is the number of operations necessary to

calculate the sum of 2*sigma+1 values of the histogram and the corresponding number of

pixels. Thus the overall OPP = 2*W+2*(2*sigma+1).

mailto:kovalev@tfh-berlin.de?subject=Fast%20avarage%20filter

Comparison of different filters

The averaging and the Gaussian filter provide the most efficient suppression of the noise;

however, they blur the image. The averaging filter with the window of W=(2*h+1) pixels

transforms steep edges of homogeneous regions to ramps of the width W. The median filter is

very popular. However, it is hardly known that it damages the image in a rather bad way: a

median filter with the window of (2*h+1)*(2*h+1) pixels "bites off" a triangle of h*(h+1)/2

pixels from each corner of a rectangular region.

Original image Filtered by median 5x5

Even more: median inverts an image with alternating black and white stripes of the width h

(except at the border of the image), i.e. black becomes white and vice versa.

The sigma-filter is the best one. When the parameters h and sigma are properly chosen, the

filter preserves steep edges and does not destroy fine details of the image. The only drawback

is the necessity to choose the parameters corresponding to a particular class of images. A class

is characterized by the size of fine details and by the intensity of noise. By the way, there is a

possibility, to automatically measure the intensity of noise and thus to automatically choose

the value of sigma. Next figure shows the results of applying different filters to an image.

If you are interested in details, write to kovalev@beuth-hochschule.de

mailto:kovalev@beuth-hochschule.de?subject=Fast%20avarage%20filter

